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The Use of Fourier Analysis  in the Interpretation of X-ray Line Broadening 
from Cold-Worked Iron and Molybdenum 
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Measurements of the line shapes in the :Debye--Scherrer spectra of iron and molybdenum, cold 
worked by filing, have been made using a Geiger-counter spectrometer. Fourier coefficients of the 
broadening functions have been calculated, using the coefficients for the annealed specimen as a 
measure of the instrumental broadening. The values of the r.m.s, strain deduced from the 110 and 
220 reflexions do not coincide, but differ by 30--50%. An investigation into the coefficients of 
theoretical line shapes has been made, and a similar effect has been found for the ease of broadening 
due to a 'Cauchy' strain distribution. Equations which have previously been thought to make no 
a priori assumptions as to line shape are shown to hold onkv for very restricted eases not likely to 
occur in practice. The unavoidable numerical errors in calculating the coefficients from any profile 
resembling a 'Cauchy', even with better-than-average experimental accuracy, appear to make 
rigorous analysis impossible. A semi-empirical approach is suggested, which, at least for the iron 
and molybdenum results, allows an accuracy bracket to be placed on the interpretation. The 
reliability of some important previous results is discussed. 

1. Experimental procedure 

The samples were prepared first by hand filing 'Armco' 
iron wire and molybdenum sheet of commercial purity 
and then by sieving the filings through a 350 mesh 
per inch screen. Samples of both filings were annealed 
in vacuo, the iron at 650 ° C. for 1 hr., and the molyb- 
denum at 1375 ° C. for 1 hr. Flat  specimens were 
prepared by pressing the filings, moistened with dilute 
Canada balsam in xylol (about 5 %), into the specimen 
holder with a thin glass plate. Line shapes were re- 
corded manually using a Geiger-counter spectrometer, 
measurements being taken every 2½' in 20 and every 
10' or 15' in 20 on the background. All counts were for 
approximately 1 rain. as determined by a second 
monitoring counter. A correction for dead time losses 
has been applied to all results (Hall & Williamson, 
1952). Monochromatic radiation reflected from a bent- 
crystal monochromator has been used throughout; 
Co K~ reflected from quartz (10il) and generated at 
50 kV. P. for the iron specimens, and Cu Kc~ reflected 
from aluminium (111), also generated at 50 kV.P. 
for the molybdenum. 

The Fourier ¢oeffioient~ of the line ~h~pe~ were 
calculated by the Stokes (1948) method from the 
graphically resolved low-angle half of the ~1 compo- 
nent. I t  has been assumed that  the annealed line 
shapes are an exact measure of the instrumental 
broadening and the coefficients of the broadening 
function are then the quotients of those from the cold- 
worked and annealed specimen line shapes. 

In order that  the coefficients themselves could be 
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interpreted using the methods of Warren & Averbach 
(1950, 1952a, b) without any change in scale, Lipson- 
Beevers strips have not been used, but instead tables 
of cos 2z~nh were constructed at intervals in h of 0.001 
and for values of n equal to 1, 2, 3, 5, 10, 20, 30, 40 
and 60. I t  is then possible to obtain directly values of 
An if the abscissae of the intensity profiles are in 
terms of h, where, using Warren &/~verbaeh's nota- 
tion, 

h+l  o = 2a3 sin 0/~. (1) 

For conformity, a s has been taken to equal a, the lattice 
parameter. The order of reflexion l 0 can be non integral 
and is related to the normal indices of reflexion, H K L ,  
by 

l~ = H~ + K2 + L ~ . (2) 

Using this method, data can be obtained for adjacent 
cells (n = 1 and the lattice repeat distance, a, apart) 
instead of the more usual value of from 5-10 spacings 
(Warren & Averbach, 1950, 1952a, b; Smith, 1953; 
McKeenhan & Warren, 1953). 

2. Anomalies in the interpretation of the 
coefficients 

The coefficients have been interpreted assuming that  
the broadening is due to lattice strains only (prelimi- 
nary line-broadening measurements indicated only 
slight particle-size broadening) where, using the equa- 
tion given by Warren & Averbach, 

An exp 22 2 = [ - 2 ~  loZ~]. (3) 

Here 'Z~ is the mean square displacement of cells na a 
apart along perpendiculars to the reflecting plane. 
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Fig. 1. The var ia t ion  of I/{Z2n} wi th  n (dis tance measu red  in 
uni ts  of the  la t t ice  p a r a m e t e r  a) for cold-worked iron. 
There  is a large d iscrepancy  be tween  the  r.m.s, s t ra ins  
( represented b y  the  initial slopes) deduced  f rom the  110 
and 220 reflexions. 
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Fig. 2. The  var ia t ion  of l/{Z2n} wi th  n for cold-worked 
m o l y b d e n u m .  

Figs. 1 and 2 show the variation of the r.m.s. 
displacement with n for iron and molybdenum, as 
deduced from the 110 and 220 reflexions. In each case 
the data for the two reflexions should coincide, since 
they both represent the same physical effect; but 
instead two quite distinct curves are obtained, though 
they are of similar shape. Thus for iron the r.m.s. 
strains, given by the initial slopes of the plot Fig. 1, 
vary from 0.00265 (220 reflexion data) to 0.0041 
(110 reflexion data), the ratio of the two values being 
1.55 instead of.the expected value of unity. For molyb- 
denum (Fig. 2) the discrepancy is not quite so great, 
but it is still too serious to be dismissed without further 
investigation. Similar results have also been reported 
by both Warren & Averbach (1950, 1952a, b) and 
Smith (1953), and it has been suggested that  equation 
(3) breaks down for large displacements. The results 
given in Figs. 1 and 2 are not consistent with tMs 
explanation since the discrepancy occurs even for the 
smallest displacements between adjacent ceils (n = 1). 

McKeenhan & Warren (1953) have implicitly at- 
tributed the effect to small particle size and, in all 
cases so far reported, the anomaly is in the correct 
sense for this explanation to hold qualitatively. A 

similar effect would occur in line-broadening analysis 
(Wflliamson & Hall, 1953) if the entire broadening 
produced by both particle size and strains were 
attributed to strains only. In fact, for Cauchy broaden- 
ing functions, the differences in the apparent strains 
for the 110 and 220 reflexions would be a3/lo(22o)e , 
where e is the linear particle size. With the discrepancy 
reported above for molybdenum the particle size 
would have to be smaller than 200 spacings, a value 
wMch, though physically reasonable, is quite in- 
compatible with the first Fourier coefficient A 1 for the 
110 reflexion, namely A1 = 0.9992 (for e = 200 spac- 
ings A1 = 0.995 even in the absence of any strain 
effects). The results for molybdenum, however, have 
been analysed for particle-size broadening using War- 
ren & Averbach's (1952a) method in which the inter- 
cept at l0 = 0 on the plot of An(lo) against l~) gives the 
particle-size coefficients A P, since 

In An l n A ~ + l n A ~  In P 22 2. = = A n - 2 ~  loZn (4) 

The values An ~ obtained, using the coefficients An for 
110 and 220 reflexions, are shown plotted against n 
in Fig. 3. A straight line fits the points for n = 10, 
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Fig. 3. A plot of the particle size coefficients An ~ agair ' n for 
molybdenum. The intercept at An P = 0 indicates P .rticle 
size of 150 spacings, or approximately 5 × 10 -6 c 

20, 30 and 40, and indicates a particle size (the inter- 
cept on n at A~ = 0) of 150 spacings or 5 × 10 -e cm. 
The line neither intersects A 0 = 1.000, as it must by 
definition, nor does it pass through the values for 
n < 10, which would, if taken by themselves, indicate 
much larger particle sizes. Correction of the observed 
coefficients for this particle-size broadening leads to 
low-order strain coefficients greater than unity, which 
can have no physical meaning. Similar tendencies may 
be observed on the figures of Warren & Averbach 
(1952a) and McKeenhan & Warren (1953), though it 
is partially obscured by the paucity of data below 
n = 10  ( L  ~ 2 5  h ) .  

I t  was thought that  many of these difficulties might 
be a result of numerical errors due to the omission of 
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Table 1. Fourier coefficients from theoretical line shapes with a strain breadth ~ = 1/200~/~ 

Ref lex ion  110 220 440 

Prof i le  Gauss ian  Cauchy  Gauss ian  Cauchy  C a u c h y  
^ ~ ^ ,~ 

Me thod  T*  C* T C T T C T C 

n ---- 0 1.000 1~000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
n---- 5 0.999 -- 0.960 0.995 0.995 0-923 0.989 0.852 0-976 
n = 10 0.995 -- 0.923 0.981 0.980 0.852 0.955 0.727 0.908 
n = 20 0.980 0-980 0.852 0.929 0.923 0.727 0.842 0.517 0"697 
n ---- 30 0.956 - -  0.787 0.861 0.835 0.620 0.713 0.391 0-492 
n ---- 40 0.923 - -  0.727 0.791 0.726 0.517 0-603 0.280 0-353 
n = 60 0.835 - -  0.620 0.639 0.487 0.391 0.442 0.150 0.190 

B a c k g r o u n d  e r ror  0.4 % 1"0 % 4.0 % 
(% p e a k  in tens i ty )  

* T :  theore t i ca l ;  C : c o m p u t e d .  

tails, as briefly discussed by Eastabrook & Wilson 
(1952). The nature of these errors has been investigated 
for theoretical line shapes as described in the next 
section. 

3. Investi~,ation of theoretical line profiles 

Gaussian line shapes were first chosen because equation 
(3) holds exactly. I t  has been assumed for simplicity 
tha t  the broadening is due entirely to a strain distribu- 
tion of the Gaussian-error-curve tyl?e , with an integral 
strain breadth ~ = 1/200~/z (so that  the mean square 
strain S 9 = ~9/2r0, and that  

z~ = c g~. (5) 

The line profiles have been calculated in terms of h, 
the reciprocal lattice variable, using 

Zzo(h) = e x p  [-=h~/t~] (6) 

for the l l0( l  0 = U2) and 220(/0 = 2~/2) reflexions. 
Fourier coefficients have been obtained, as described 
in § 1, by numerical summation. The computed 
coefficients agreed with those calculated from equa- 
tion (3) within 0.1% and showed no anomalies in the 
plot of ~/{Z~} against n, for which data from both 
reflexions gave a linear plot, as expected from equation 
(5), and indicated the correct value of the mean square 
strain. 

Some of the coefficients are listed in Table 1. 
Cauchy profiles were next examined since these have 

very long tails, resembling those observed in practice, 
so that  a more reasonable indication of the importance 
of tail errors is to be expected. Intensity profiles were 
calculated using the same value of ~ as before for the 
110, 220 and 440 reflexions, using 

Z,o(h) = {l+(=h/Z0~)2} -1 . (7) 

Line shapes have been cut off at too high a background 
level to simulate the effect of experimental errors. 
The magnitudes of the errors (Table 1) are probably 
much smaller than those made in practice, particularly 
for the 220 and 440 reflexions. 

The computed coefficients (Table 1) will be seen to 

falloff much more rapidly with n than do the coefficients 
for a Gaussian profile of identical integral b read th .  
Interpretation of these computed coefficients, using 
equation (3) for the r.m.s, displacement ~/{Z-~}, is 
shown in Fig. 4, which is strikingly similar to the curves 
observed in practice (Figs. 1 and 2) particularly in the 
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Fig. 4. A p lo t  of I/{Z~} aga ins t  n deduced  f rom the  c o m p u t e d  
coeff icients  for  theore t i ca l  line shapes  wi th  b roaden ing  
p r o d u c e d  b y  a Cauchy  s t ra in  d i s t r ibu t ion .  The  resemblance  
to  Figs. 1 and  2 is discussed in the  t ex t .  

marked difference between the apparent mean square 
strains for the 110 and 220 reflexions. I t  is important 
to note that  equation (5) predicts a linear relation 
between V{Z~} and n, though this is not apparent in 
Fig. 4, which shows the usual, but in this case fortu- 
itous, non linear relationship. The difference in slopes 
above n - 20 is surprising because the tail errors are 
expected to be negligible above this point (Eastabrook 
& Wilson, 1952). 

The computed 'Cauchy strain' coefficients can be 
interpreted in terms of simultaneous particle-size and 
strain broadening even though the original profile 
represents strain broadening only. Thus the ln A n 
versus lo ~ plots (Fig. 5) give a fairly good straight line, 
though the fit of the points could be improved if-the 
tail error for the 110 reflexion was reduced, or that  for 
220 increased. A~ values, deduced by neglecting the 
results for the 440 reflexion, are shown plotted against 
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Fig. 5. A plot of In An against l0 ~ for the computed coefficients 
f rom theoretical line shape broadened solely by  a Cauchy 
strain distribution. The intercepts at  10~-~ 0 lead to the 
particle-size plot shown in Fig. 6. 
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Fig. 6. /k plot of the 'particle size' coefficients An/' (deduced 
in Fig. 5) against n. A small particle size of 240 spacings is 
indicated even though the original profiles were calculated 
to correspond to an infinite particle size. 

n in Fig. 6, where a particle size of 240 spacings is 
indicated. As in practice, the plot does not intersect 
A0 P = 1.000 and the value of A~, taken by itself, 
indicates a much larger particle size. Even smaller 
particle sizes could be obtained by neglecting the 
results for the 220 reflexion. 

I t  is apparent, without further discussion, that  the 
results for iron and molybdenum have an alternative 
explanation to that  in terms of small particle size and 
strain if the strain distribution producing the broaden- 
ing is a Cauchy profile, an explanation which appears 
to account for most of the anomalies which are other- 
wise obtained (Figs. 1, 2 and 3). 

The correct values of the coefficients for the Cauchy 
strain profile can be found by direct integration. 
Solution of the integral equation for An gives (Copson, 
1935) 

An = exp (-2n105) . (8) 

This equation leads to the theoretical values for the 
coefficients listed in Table 1. The only similarity 
between these coefficients and those for the Gaussian 
distribution is that  they both obey the equality for 
'strain' coefficients for the 10 and mlo reflexions: 

An(lo) = A,,/=(mlo). (9) 

I t  should be noted that  An initially varies linearly 
with n, instead of with n ~ as for Gaussian profiles. 

Equation (8) is adequate for most interpretations 
though it can usefully be written in terms of the r.m.s. 
strain if the necessary integration is cut off at some 
small strain instead of infinity. In the Fourier analysis 
the lines finish at strains of 0.5, but for calculating 
stored energy the strain at which Hooke's law becomes 
invalid is the maximum reasonable value, and thus the 
limit is probably 0.2. In  general, if the cut-off strain 
is c, then, if. c > 3~, 

(S~)c = 2cE/~  ~ (10) 

is a good approximation, and thus for a cut-off strain 
of 0.2 

(S~)0.~ = 2E/5~ ~ . (11) 
Writing 

= n ' ~  = 2 ~ 2 c ~ / ~ ,  (12) 

and. substituting in equation (8), An becomes 

An = exp  (-z#loZ~/nc)  . (13) 

Equation (13) is important in so far as it emphasizes 
the limited application of equation (3), which was 
previously thought to be general. I t  can be seen that  
equation (3) does in fact make a priori assumptions 
as to the exact line shape and that  the use of any 
analysis using it can only be justified if the line shape 
were shown to be a Gaussian error curve. 

I t  is now possible to discuss more fully some of the 
consequences of interpreting coefficients from a Caurhy 
strain profile using equation (3). If l/{YS~} is the 
apparent r.m.s, displacement deduced on this basis, 
by equating (3) and (8) for An we have 

2z~e/o2(},2) = 2nlo~,  

V{~} = (~/10~2) ~. (14) 

Thus the plot of r.m.s, displacement against n is a 
parabola (Fig. 7), instead of the true linear relation 
necessary by equation (11), and each order gives a 

0.1o 
® -110 

4~ 

0.05 

0 20 40 60 

Fig. 7. A plot of V{z2n} against n deduced from the theoretica 
coefficients for Cauchy profiles. 
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different curve in which the scale of n has changed 
in the ratios of the orders of reflexion; the apparent 
r.m.s, strain (at n = 0) is infinity for all reflexions. 

The effect of tail errors is to reduce the apparent 
r.m.s, strains to more reasonable values and to make 
the discrepancy between results for two orders less 
serious, as already shown in Fig. 4. Although these 
errors make the coefficients behave as if the line shape 
were much more nearly Gaussian, the coefficients do 
indicate to some extent the increased strain energy 
associated with the Cauchy profile. Thus both the 
theoretical and observed values of the mean square 
strain from the Gaussian profiles discussed above are 
1.26 × 10 -e, that  indicated by the computed coefficients 
interpreted as if the profile were Gaussian is 5.29 × 10 -e 
for the 110, and 2.89×10 -e for the 220 reflexions, 
while the true value for a Cauchy profile (cut-off 
strain 0.2) is 1.14×10 -4, an overall variation of 2 
orders of magnitude. 

The analysis for particle size (see equation (4)) also 
implicitly assumes that  the strain distribution is a 
Gaussian. Theoretical values of the coefficients from 
a profile broadened only by a Cauchy strain distribu- 
tion behave qualitatively on a plot of in A~ against 
l~ as if there were appreciable particle-size broadening. 
If only the first two orders of reflexion from one plane 
are considered the indicated particle size is in fact a 
simple function of the strain breadth: 

£apparent = a/~. 

In this case, however, the inclusion of results from a 
third reflexion invalidates the analysis since the 
in A,~-l~) plot is parabolic instead of linear. 

This test cannot yet be applied in practice since 
the presence of tail errors does tend to make the plot 
more nearly linear in addition to increasing the appar- 
ent particle-size broadening, as predicted by Easta- 
brook & Wilson (see Figs. 5 and 6). 

From the above it can be seen that  the results 
presented in Figs. 1, 2 and 3 are more nearly consistent 
with the strain distribution being of the Cauchy type 
than with it being Gaussian, and hence alternative 
methods of interpretation are needed. 

4. Alternative m e t h o d s  of interpretat ion 

Many of the more obvious analytical approaches 
(such as a plot of In (In A,) against In (10) cannot be 
applied because of the tail errors. These errors also 
make it unjustifiable to attach any physical signifi- 
cance to variations in the coefficients for n < 10, 
though some interpretation of the higher coefficients 
is possible since they merely require renormalizing, i.e. 

(In An)true = (In An)obs.+ln K ,  

where k = Aotn~e/Aoobs.. Thus, since A,  = A,A,,P D 

(ln (A,))obs. = In A~ +in A P - l n  K .  

A rigorous analysis to separate A~ and A~ is impossible 
unless the value of K can be accurately assessed for 
each reflexion, apart from the difficulty of determining 
the appropriate function of n and 10 which defines A~. 

Possibly the best approach with the experimental 
accuracies now available is to at tempt to bracket the 
required values and to assess the reliability of the 
possible interpretations. In  the published work on 
particle-size broadening the line shapes are found to be 
intermediate between the two extremes of Cauchy and 
Gaussian (see for example Jones (1938) and Schoening, 
van Niekerk & Haul, 1952). 

For distortion broadening there is less evidence, but 
recent work (Averbach & Warren, 1949; Hall & 
Williamson, 1951) has shown that  the broadening 
function has a broad base and very long tails, so 
that  its behaviour will more nearly resemble that  of a 

Cauchy than a Gaussian profile. Although it is not 
possible a pr ior i  to rule out the possibility that  some 
broadening functions lie outside this range (particu- 
larly in recovered materials) it seems to be a good 
working hypothesis to suggest that, in general, the 
true values would be bracketed by parallel analyses 
based on either equation (3) or (8). With results Of 
moderate accuracy or better, equation (3) gives lower 
limiting values of both particle size and strain and 
equation (8) gives the upper limits. An estimate of the 
probability of each extreme can be obtained by 
comparing the behaviour of the observed coefficients 
on analysis, with those of the computed values for the 
appropriate theoretical profile. Figs. 4, 5 and 6 show 
the behaviour of the values for a Cauchy profile 
interpreted using equation (3), a behaviour sur- 
prisingly similar to that  observed in practice. 

The results of interpretations for 'strain' coefficients 
based on equation (8) are shown in Figs. 8 and 9. 
The use of equation (8) is preferable to the use of 
equation (13) since it does not involve the use of a 
cut-off strain c; the values of n~ can be regarded as 

0.15 / , , ~  
e-110 ,,/ 
A-220 j j /  

0-10 v-440 . / . / ' j  

J d'~'~ ~ nt" " ~  

0,0 i J  
.,~/ddd 

o io  ' 4~ ' 
n 

Fig. 8. The interpretat ion of the coefficients for Cauehy 'strain" 
profiles, using equation (8). The value of n~ represents a 
mean displacement and is plot ted against n. The broken 
line is the theoretical variation, and results for the com- 
puted coefficients give a line of parallel slope above n = 15. 
The initial deviation from this slope is due to n u m e r i c a l  
e rrors  w h i c h  are  discussed in the text.  
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Fig. 9. A plot  of n~ against  n for three  'refloxions' broadened 
by  a Gaussian s train dis tr ibut ion.  

a mean value of the displacement. For Cauchy profiles 
the plot of n~ versus n is shown in Fig. 8. Values for 
all three reflexions indicate the same slope (~) above 
n -- 10; this slope agrees closely with the theoretical 
value ~ = 1/200Vg assumed in calculating the original 
line shapes. The initial deviation from this slope is due 
entirely to taft errors and in practice no more physical 
significance can be justifiably attached to apparent 
increase in strain with n in Fig. 8 than can be attached 
to the gradual decrease apparent in Figs. 1, 2, 4 and 7. 
The gradual decrease obtained in practice using 
equation (3) has commonly been given a physical 
interpretation, but this is completely unjustified until 
either the strain profile is shown to be a Gaussian, 
or until a very much more rigorous analysis is made. 
The interpretation of coefficients from a Gaussian 
profile using equation (8) (Fig. 9) leads once more to 
r.m.s, strain values which are a function of 10, this 
anomaly being the reverse of the one which promoted 
the investigation (Figs. 1 and 2). 

The plot of n~ against n for the coefficients from 
the spectra of iron (using equation (8)) is shown in 
Fig. 10. The plot is linear above n = 10, and com- 
parisons of Fig. 10 with Figs. 8 and 9, and of Fig. 1 
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Fig. 10. A plot  of n~ against  n for cold-worked iron. 

with Fig. 4 suggest that  in this case the broadening 
function is closer to a Cauchy than a Gaussian profile. 
The plots do not, however, coincide for different orders 

579 

of reflexion, though the discrepancy is less than that  
in Fig. 1. This discrepancy might be due either to 
some particle-size broadening or to the strain-broaden- 
ing function being even more extreme than a Cauchy. 
The particle-size broadening coefficients may be 
estimated on the assumption that  the strain distribu- 
tion is a Cauchy profile by plots of In An against 10 
(instead of l~ as in Fig. 5). Fig. 11 shows the plot of 
these coefficients against n and indicates a particle 
size of 10 -5 cm. (350 spacings). The fall away from the 
best straight line below n - - 1 5  is quite reasonable 
since tail errors are expected for Cauchy profiles. 

The interpretation of the molybdenum results, 
whilst giving a linear plot for n > 10, gives a discrep- 
ancy in the indicated strain breadth which cannot be 
accounted for by any small-particle-size effect, and 
in the absence of other information this is consistent 
with the line shape being intermediate between the 
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Fig. 11. A plot  of An 2 against  n for cold-worked i ron  deduced  
by  assuming a Cauchy strain distr ibution.  The indicated 
particle size is 10 -5 cm. 

two extremes. The upper limit to the particle size is 
thus infinity. I t  is of course not possible to attach any 
physical significance to the apparent rise of ~ with n 
in the range n = 0-15 because for Cauchy line shapes 
tail errors are known to be serious and to cause just 
such an effect. On the other hand the broadening 
profile cannot be Gaussian, for with tMs profile nu- 
merical errors have a negligible effect and it is there- 
fore not possible to account either for the difference 
between the theoretical curves (Fig. 9) and those for 
iron and molybdenum (Figs. 10 and 12), or for the 
anomalies at low n values using equation (3) as 
discussed in § 2. Thus the var/ation of r.m.s, strain 
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Fig. 12. A p lo t  of n~ against  n for cold-worked mo lybdenum.  
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Table 2. Limiting values of the mean square strain and particle sizes for iron and molybdenum 

R.m.s. Particle size (cm.) 

Cauchy Gaussian Cauchy Gaussian 
Fo 0.8 × 10 -9 0.25-0.4 × 10 -2 1-0 × 10 -5 3.0 × 10 -s 
Me 0.8--0.94 × 10 -2 0"4-0"5 × 10 -~ c~ 5.0 × 10 -e 

with n, as apparent in Figs. 1 and 2, since it  is just  
the expected behaviour of coefficients from non- 
Gaussian line shapes interpreted using equation (3), 
has no real physical significance; any such variation 
which may  occur is certainly masked by the possible 
errors in the analysis, and Figs. 10 and 12 show tha t  
any such effect, if it  occurs, is very small for cells 
greater than  10 spacings apart.  

The limiting values of the mean square strain and 
particle sizes for the two specimens is shown in Table 2. 
The upper limits of the strain are to be preferred to 
the lower because Cauchy profiles are the more 
probable, but  the limit for molybdenum is certainly 
slightly too high. Particle-size determination is, how- 
ever, much less certain and, though both values for 
iron appear reasonable, the results for molybdenum 
have so large a range of values as to be inconclusive. 

5. D i s c u s s i o n  

The foregoing sections have indicated tha t  it  is not yet  
possible to use the method of analysing Fourier 
coefficients of the broadening function without some 
assumptions as to the exact form of the function itself. 
I t  should not  be thought,  however, tha t  this makes 
the method any less powerful than  those based on line 
broadening, for here too similar assumptions have to 
be made. The previous remarks in no way invalidate 
the 'Stokes' method for correcting for instrumental  
broadening, and, though the 'tail errors' discussed are 
returned to the tail, if the broadening function is 
calculated from the coefficients, the errors still persist 
in any line-broadening analysis. The Fourier analysis 
method does, of itself, part ial ly compensate for the 
'strain '  profile if used for calculating stored energies, 
whereas line-broadening analysis makes no such cor- 
rection. In  this sense the Fourier analysis takes 
account of the line profile, and if sufficient data  could 
be obtained exact limits could probably be set on the 
values of mean square strain. 

Generally elastic anisotropy interferes seriously with 
the interpretation of results, but  this is not so for 
tungsten, which is elastically isotropic. McKeenhan & 
Warren have published a very full set of coefficients 
for thoriated tungsten from which they deduce a very 
small particle size. An analysis of their data  on the 
Cauchy basis still indicates a small particle size though 
the particle size is somewhat larger than  their value; 
the true value appears to lie in the range 200-600 _~. 
In  this particular case particle-size broadening pre- 
dominates and it is hence relatively insensitive to the 

assumed form of the strain distribution. This result is 
interesting because the more limited data  of William- 
son & Hall (1953) for pure tungsten indicates a very 
much larger particle size. 

Another two interpretations appear to be relatively 
unaffected by the previous discussion: they  are (1) the 
analysis for fault broadening in deformed copper 2 % 
silicon by Warren & Averbaeh (1952a) and (2) the 
interpretation of the coefficients for a recovered metal  
by Williamson & Hall (1953). 

The most important  interpretation which the present 
work has shown to be unjustified is the very at t ract ive 
one tha t  the strains decrease as the distance between 
cells increases. Though such an effect may  occur, 
there is, as yet, no conclusive evidence for i t  since an 
alternative explanation in terms of experimental error 
always appears to be more plausible. Also the sug- 
gestion (Williamson & Hall, 1953) tha t  the 'cross over' 
of the Fourier coefficients from different orders in- 
dicated the presence of strains in the annealed specimen 
is no longer a valid argument, for much of the 'cross 
over', if not all, may  be due to tail errors. 

The mere existence of long tails on the strain 
distribution which give rise to the errors making exact 
analysis more difficult is, in itself, a very important  
result. I t  confirms the intensity work of Averbach & 
Warren (1949), who reported long tails on the weak 
400 reflexion, and the work of Hall & Williamson 
(1951), who observed tails so long tha t  they  overlapped 
sufficiently to cause a detectable rise in the back- 
ground level. These long tails lead natural ly to the 
picture of the cold-worked state based on dislocations 
which has already been discussed elsewhere (William- 
son & Hall, 1953). 

We wish to acknowledge the encouragement of the 
late Prof. Hanson, Head of the Depar tment  of Metal- 
h r g y  of the University of Birmingham, for financial 
support, a Wiggin Research Scholarship (R.E.S.) and 
an I.C.I. Research Fellowship (G.K.W.). We should 
als0 like to thank Dr M.A. Jasw0n for valuable 
discussion. 

References 

AVERBACH, B.L.  & WXRRE~, B .E .  (1949). J. Appl. 
Phys. 20, 1066. 

CoPses, E. T. (1935). Theory of .Functions of a Complex 
Variable, p. 130. Oxford: University Press. 

EASTABROO~:, J .N .  & Wl-LSO~, A. J .C.  (1952). P'roc. 
Phys. Soc., Lend. B, 65, 67. 

HATJu, W.H.  & WII~I.~SON, G.K. (1951). Prec. Phys. 
Soc., Lend. B, 64, 946. 



G. K. W I L L I A M S O N  AND R. E. SMALLMAN 581 

HALL, W.H.  & WILLIAlVISON, (]. K. (1952). J. Sci. In- 
strum. 29, 132. 

JONES, F. W. (1.938). Proc. Roy. Soc. A, 166, 16. 
MCKEENHAN, 1~I. & WARREN, B.E.  (1953). J. Appl. 

Phys. 24, 52. 
SCHOENING, F . R . L . ,  NIEKERK, J .N.  VAN & HAUL, 

R. A. W. (1952). Proc. Phys. Soc., Lond. B, 65, 528. 
SMZTH, R.A. (1953). J. Iron Steel Inst. 173, 147. 
STOKES, A.R.  (1948). Proc. Phys. Soc., Lond. 01, 382. 

WARREI~, B . E .  & AVERBACI=r, B . L .  (1950). J. Appl. 
Phys. 21, 595. 

WARREN, B.E.  & AVElZBACH, B.L. (1952a). J. Appl. 
Phys. 23, 497. 

WARREN, B.E.  & AVERBAC~r, B.L. (1952b). Imperfec- 
tions in 1Vearly Perfect Crystals, p. 152. New York: 

Wiley; London: Chapman and Hall. 
WlLT.IAMSOI% G.K. & HAT.T., W. H. (1953). Acta Metal- 

lurgica, 1, 22. 

Acta Cryst. (1954). 7, 581 

The Determinat ion of S igns  of Structure Factors from the Intensit ies  

BY W. COCHR~ 

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England 

(Received 21 May 1954) 

It  is shown that in principle the magnitudes and signs of certain structure factors can be calculated 
from a sufficient range of X-ray intensities. The range provided by experiment will seldom be 
enough to make the results of practical value. 

Introduct ion 

A routine procedure which does not require previous 
knowledge of any signs has been developed by Haupt- 
man & Karle (1953) for determining the signs of the 
structure factors for space group P1. Their claim 
that  the procedure is valid for crystals of any com- 
plexity, given only a knowledge of a sufficient number 
of X-ray intensities, is, however, incorrect, as has been 
pointed out by Vand & Pepinsky (1953, 1954) and by 
Cochran & Woolfson (1954). In the following sections 
a method is described by which both the magnitudes 
and the signs of certain structure factors (one-eighth 
of the total for space group P1) can in principle be 
calculated from a sufficient range of intensities. The 
results hold for centrosymmetric crystals and for some 
non-centrosymmetric crystals, but unfortunately the 
auxiliary conditions are so restrictive as to make the 
results of no value for the practical determination of 
any but the simplest crystal structures. 

Derivat ion  for space ~,roup P1 

The physical basis of the result is roughly as follows. 
Suppose that  N equal atoms per unit cell have coor- 
dinates ±ri ,  i = 1, 2, . . . ,  ½N. The corresponding Pat- 
terson function has N peaks of weight 1 at points 
±2r i  and -~(N2-2N) peaks of weight 2 at ±(ri±rj) ,  
i ~= j. In the squared Patterson function the weights 
of peaks belonging to these two classes are therefore 
1 and 4 respectively. By multiplying the Patterson 
function by 2, and subtracting from it a modification 
of the squared Patterson function, all peaks except 
those at ±2ri  can be cancelled out, and the positions 
of these remaining peaks bear an obvious relation to 

the atomic positions. These functions and operations 
have each a counterpart in reciprocal space, and when 
expressed in terms of structure factors the result is a 
relation between those structure factors whose indices 
are all even, and the intensities. 

To simplify the derivation, we take the atoms to 
have scattering factors f = 1 for all values of s = 
2 sin 0/k, that  is, they are point atoms. The peaks of 
the Patterson function then have scattering factors 
(more correctly, Fourier t r a n s f o r m s ) f 2 =  1, from 
which it follows that  the density distribution in an 
atomic peak and in a Patterson peak is the same. We 
now define 

½~ 
F(h) = 2 ~v cos 2~h.  r i ,  (1) 

j = l  

Q(r) = ~v h F(h) cos 2~h .  r ,  (2) 
8 < 8o 

P(r)  = ~v u F2(h) cos 2~h .  r .  (3) 
8 ~  8 o 

From (1) it may be shown that  

m=+~(N2--2~ ") 
2'2(h) = N + F ( 2 h ) + 2  ~ cos 2~h .  rm, (4) 

m=--~ ( N2-- 22~ ~) 

where rm = r i - r j ,  i 4= j. 

The summation over h is over all reciprocal-lattice 
points which lie inside a sphere of radius s 0. (The 
value of s o will be considered later.) 

We now define 

~2(r) -- ~ h  G(h) cos 2reh. r .  (5) 
8 ~ 2~0 

I t  then follows (Sayre, 1952) that  


